{ "id": "1801.09591", "version": "v1", "published": "2018-01-29T15:56:40.000Z", "updated": "2018-01-29T15:56:40.000Z", "title": "A note on expansion in prime fields", "authors": [ "Tuomas Orponen", "Laura Venieri" ], "comment": "7 pages", "categories": [ "math.CO", "math.CA", "math.NT" ], "abstract": "Let $\\beta,\\epsilon \\in (0,1]$, and $k \\geq \\exp(122 \\max\\{1/\\beta,1/\\epsilon\\})$. We prove that if $A,B$ are subsets of a prime field $\\mathbb{Z}_{p}$, and $|B| \\geq p^{\\beta}$, then there exists a sum of the form $$S = a_{1}B \\pm \\ldots \\pm a_{k}B, \\qquad a_{1},\\ldots,a_{k} \\in A,$$ with $|S| \\geq 2^{-12}p^{-\\epsilon}\\min\\{|A||B|,p\\}$. As a corollary, we obtain an elementary proof of the following sum-product estimate. For every $\\alpha < 1$ and $\\beta,\\delta > 0$, there exists $\\epsilon > 0$ such that the following holds. If $A,B,E \\subset \\mathbb{Z}_{p}$ satisfy $|A| \\leq p^{\\alpha}$, $|B| \\geq p^{\\beta}$, and $|B||E| \\geq p^{\\delta}|A|$, then there exists $t \\in E$ such that $$|A + tB| \\geq c p^{\\epsilon}|A|,$$ for some absolute constant $c > 0$. A sharper estimate, based on the polynomial method, follows from recent work of Stevens and de Zeeuw.", "revisions": [ { "version": "v1", "updated": "2018-01-29T15:56:40.000Z" } ], "analyses": { "subjects": [ "11B30", "11B13" ], "keywords": [ "prime field", "polynomial method", "sharper estimate", "absolute constant", "sum-product estimate" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }