{ "id": "1801.09316", "version": "v1", "published": "2018-01-28T23:39:54.000Z", "updated": "2018-01-28T23:39:54.000Z", "title": "Gelfand-Tsetlin Theory for Rational Galois Algebras", "authors": [ "Vyacheslav Futorny", "Dimitar Grantcharov", "Luis Enrique Ramírez", "Pablo Zadunaisky" ], "categories": [ "math.RT" ], "abstract": "In the present paper we study Gelfand-Tsetlin modules defined in terms of BGG differential operators. The structure of these modules is described with the aid of the Postnikov-Stanley polynomials introduced in [PS09]. These polynomials are used to identify the action of the Gelfand-Tsetlin subalgebra on the BGG operators. We also provide explicit bases of the corresponding Gelfand-Tsetlin modules and prove a simplicity criterion for these modules. The results hold for modules defined over standard Galois orders of type $A$ - a large class of rings that include the universal enveloping algebra of $\\mathfrak{gl} (n)$ and the finite $W$-algebras of type $A$.", "revisions": [ { "version": "v1", "updated": "2018-01-28T23:39:54.000Z" } ], "analyses": { "subjects": [ "16G99", "17B10" ], "keywords": [ "rational galois algebras", "gelfand-tsetlin theory", "study gelfand-tsetlin modules", "bgg differential operators", "standard galois orders" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }