{ "id": "1801.09235", "version": "v1", "published": "2018-01-28T14:15:03.000Z", "updated": "2018-01-28T14:15:03.000Z", "title": "On one generalization of finite nilpotent groups", "authors": [ "Zhang Chi", "Alexander N. Skiba" ], "comment": "16 pages", "categories": [ "math.GR" ], "abstract": "Let $\\sigma =\\{\\sigma_{i} | i\\in I\\}$ be a partition of the set $\\Bbb{P}$ of all primes and $G$ a finite group. A chief factor $H/K$ of $G$ is said to be $\\sigma$-central if the semidirect product $(H/K)\\rtimes (G/C_{G}(H/K))$ is a $\\sigma_{i}$-group for some $i=i(H/K)$. $G$ is called $\\sigma$-nilpotent if every chief factor of $G$ is $\\sigma$-central. We say that $G$ is semi-${\\sigma}$-nilpotent (respectively weakly semi-${\\sigma}$-nilpotent) if the normalizer $N_{G}(A)$ of every non-normal (respectively every non-subnormal) $\\sigma$-nilpotent subgroup $A$ of $G$ is $\\sigma$-nilpotent. In this paper we determine the structure of finite semi-${\\sigma}$-nilpotent and weakly semi-${\\sigma}$-nilpotent groups.", "revisions": [ { "version": "v1", "updated": "2018-01-28T14:15:03.000Z" } ], "analyses": { "subjects": [ "20D10", "20D15", "20D30" ], "keywords": [ "finite nilpotent groups", "generalization", "chief factor", "finite group", "nilpotent subgroup" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }