{ "id": "1801.09209", "version": "v1", "published": "2018-01-28T11:13:00.000Z", "updated": "2018-01-28T11:13:00.000Z", "title": "Nash inequality for Diffusion Processes Associated with Dirichlet Distributions", "authors": [ "Feng-Yu Wang", "Weiwei Zhang" ], "comment": "20 pages", "categories": [ "math.PR" ], "abstract": "For any $N\\ge 2$ and $\\alpha=(\\alpha_1,\\cdots, \\alpha_{N+1})\\in (0,\\infty)^{N+1}$, let $\\mu^{(N)}_{\\alpha}$ be the Dirichlet distribution with parameter $\\alpha$ on the set $\\Delta^{ (N)}:= \\{ x \\in [0,1]^N:\\ \\sum_{1\\le i\\le N}x_i \\le 1 \\}.$ The multivariate Dirichlet diffusion is associated with the Dirichlet form $${\\scr E}_\\alpha^{(N)}(f,f):= \\sum_{n=1}^N \\int_{ \\Delta^{(N)}} \\bigg(1-\\sum_{1\\le i\\le N}x_i\\bigg) x_n(\\partial_n f)^2(x)\\,\\mu^{(N)}_\\alpha(d x)$$ with Domain ${\\scr D}({\\scr E}_\\alpha^{(N)})$ being the closure of $C^1(\\Delta^{(N)})$. We prove the Nash inequality $$\\mu_\\alpha^{(N)}(f^2)\\le C {\\scr E}_\\alpha^{(N)}(f,f)^{\\frac p{p+1} }\\mu_\\alpha^{(N)} (|f|)^{\\frac 2 {p+1}},\\ \\ f\\in {\\scr D}({\\scr E}_\\alpha^{(N)}), \\mu_\\alpha^{(N)}(f)=0$$ for some constant $C>0$ and $p= (\\alpha_{N+1}-1)^+ +\\sum_{i=1}^N 1\\lor (2\\alpha_i),$ where the constant $p$ is sharp when $\\max_{1\\le i\\le N} \\alpha_i \\le 1/2$ and $\\alpha_{N+1}\\ge 1$. This Nash inequality also holds for the corresponding Fleming-Viot process.", "revisions": [ { "version": "v1", "updated": "2018-01-28T11:13:00.000Z" } ], "analyses": { "keywords": [ "nash inequality", "dirichlet distribution", "diffusion processes", "multivariate dirichlet diffusion", "dirichlet form" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }