{ "id": "1801.09164", "version": "v1", "published": "2018-01-28T01:38:01.000Z", "updated": "2018-01-28T01:38:01.000Z", "title": "Another look into the Wong-Zakai Theorem for Stochastic Heat Equation", "authors": [ "Yu Gu", "Li-Cheng Tsai" ], "comment": "13 pages", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "Consider the heat equation driven by a smooth, Gaussian random potential: \\begin{align*} \\partial_t u_{\\varepsilon}=\\tfrac12\\Delta u_{\\varepsilon}+u_{\\varepsilon}(\\xi_{\\varepsilon}-c_{\\varepsilon}), \\ \\ t>0, x\\in\\mathbb{R}, \\end{align*} where $\\xi_{\\varepsilon}$ converges to a spacetime white noise, and $c_{\\varepsilon} $ is a diverging constant chosen properly. For any $ n\\geq 1 $, we prove that $ u_{\\varepsilon} $ converges in $ L^n $ to the solution of the stochastic heat equation. Our proof is probabilistic, hence provides another perspective of the general result of Hairer and Pardoux \\cite{Hairer15a}, for the special case of the stochastic heat equation.", "revisions": [ { "version": "v1", "updated": "2018-01-28T01:38:01.000Z" } ], "analyses": { "keywords": [ "stochastic heat equation", "wong-zakai theorem", "gaussian random potential", "heat equation driven", "spacetime white noise" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }