{ "id": "1801.08972", "version": "v1", "published": "2018-01-26T21:01:04.000Z", "updated": "2018-01-26T21:01:04.000Z", "title": "Multiplicity of eigenvalues of cographs", "authors": [ "Luiz Emilio Allem", "Fernando Tura" ], "categories": [ "math.CO" ], "abstract": "Motivated by the linear time algorithm that locates the eigenvalues of a cograph G [10], we investigate the multiplicity of eigenvalue for \\lambda \\neq -1,0. For cographs with balanced cotrees we determine explicitly the highest value for the multiplicity.The energy of a graph is defined as the sum of absolute values of the eigenvalues. A graph G on n vertices is said to be borderenergetic if its energy equals the energy of the complete graph Kn. We present families of non-cospectral and borderenergetic cographs.", "revisions": [ { "version": "v1", "updated": "2018-01-26T21:01:04.000Z" } ], "analyses": { "keywords": [ "eigenvalue", "multiplicity", "linear time algorithm", "complete graph kn", "absolute values" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }