{ "id": "1801.08905", "version": "v1", "published": "2018-01-26T17:30:51.000Z", "updated": "2018-01-26T17:30:51.000Z", "title": "On Motzkin numbers and central trinomial coefficients", "authors": [ "Zhi-Wei Sun" ], "comment": "21 pages", "categories": [ "math.CO", "math.NT" ], "abstract": "The Motzkin numbers $M_n=\\sum_{k=0}^n\\binom n{2k}\\binom{2k}k/(k+1)$ $(n=0,1,2,\\ldots)$ and the central trinomial coefficients $T_n$ ($n=0,1,2,\\ldots)$ given by the constant term of $(1+x+x^{-1})^n$ have many combinatorial interpretations. In this paper we establish the following surprising arithmetic properties of them with $n$ any positive integer: $$\\frac2n\\sum_{k=1}^n(2k+1)M_k^2\\in\\mathbb Z,$$ $$\\frac{n^2(n^2-1)}6\\,\\bigg|\\,\\sum_{k=0}^{n-1}k(k+1)(8k+9)T_kT_{k+1},$$ and also $$\\sum_{k=0}^{n-1}(k+1)(k+2)(2k+3)M_k^23^{n-1-k}=n(n+1)(n+2)M_nM_{n-1}.$$", "revisions": [ { "version": "v1", "updated": "2018-01-26T17:30:51.000Z" } ], "analyses": { "subjects": [ "05A10", "05A19", "11A07", "11B75" ], "keywords": [ "central trinomial coefficients", "motzkin numbers", "constant term", "combinatorial interpretations", "surprising arithmetic properties" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }