{ "id": "1801.08471", "version": "v1", "published": "2018-01-25T16:16:18.000Z", "updated": "2018-01-25T16:16:18.000Z", "title": "Affine Grassmannians in A^1-algebraic topology", "authors": [ "Tom Bachmann" ], "comment": "10 pages; comments welcome!", "categories": [ "math.AG", "math.AT", "math.KT" ], "abstract": "Let k be a field. Denote by Spc(k)_* the unstable, pointed motivic homotopy category and by Omega_Gm: Spc(k)_* \\to Spc(k)_* the Gm-loops functor. For a k-group G, denote by Gr_G the affine Grassmannian of G. If k is infinite and G is split reductive, we provide a canonical motivic equivalence Omega_Gm G = Gr_G. If k satisfies resolution of singularities, we use this to compute the motive M(Omega_Gm G) in DM(k, Z).", "revisions": [ { "version": "v1", "updated": "2018-01-25T16:16:18.000Z" } ], "analyses": { "keywords": [ "affine grassmannian", "pointed motivic homotopy category", "gm-loops functor", "satisfies resolution", "canonical motivic equivalence" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }