{ "id": "1801.08386", "version": "v1", "published": "2018-01-25T12:54:52.000Z", "updated": "2018-01-25T12:54:52.000Z", "title": "Conserved energies for the one dimensional Gross-Pitaevskii equation: small energy case", "authors": [ "Herbert Koch", "Xian Liao" ], "categories": [ "math.AP" ], "abstract": "We derive in this paper a family of conserved energies for the one dimensional Gross-Pitaevskii equation in the small energy case, which describe all the $H^s$, $s>\\frac 12$ regularities of the solutions. We endow the energy space with a metric to make it a complete metric space and study its topological property.", "revisions": [ { "version": "v1", "updated": "2018-01-25T12:54:52.000Z" } ], "analyses": { "keywords": [ "dimensional gross-pitaevskii equation", "small energy case", "conserved energies", "complete metric space", "energy space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }