{ "id": "1801.07898", "version": "v1", "published": "2018-01-24T08:09:27.000Z", "updated": "2018-01-24T08:09:27.000Z", "title": "Algebras with finitely many conjugacy classes of left ideals versus algebras of finite representation type", "authors": [ "Arkadiusz Męcel", "Jan Okniński" ], "categories": [ "math.RT", "math.RA" ], "abstract": "Let A be a finite dimensional algebra over an algebraically closed field with the radical nilpotent of index 2. It is shown that A has finitely many conjugacy classes of left ideals if and only if A is of finite representation type provided that all simple A-modules have dimension at least 6.", "revisions": [ { "version": "v1", "updated": "2018-01-24T08:09:27.000Z" } ], "analyses": { "subjects": [ "16P10", "16D99", "16G60", "20M99" ], "keywords": [ "finite representation type", "conjugacy classes", "left ideals", "finite dimensional algebra", "simple a-modules" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }