{ "id": "1801.07469", "version": "v1", "published": "2018-01-23T10:26:25.000Z", "updated": "2018-01-23T10:26:25.000Z", "title": "Non-local Torsion functions and Embeddings", "authors": [ "Giovanni Franzina" ], "categories": [ "math.AP" ], "abstract": "Given $s \\in (0,1)$, we discuss the embedding of $\\mathcal D^{s,p}_0(\\Omega)$ in $L^q(\\Omega)$. In particular, for $1\\le q < p$ we deduce its compactness on all open sets $\\Omega\\subset \\mathbb R^N$ on which it is continuous. We then relate, for all q up the fractional Sobolev conjugate exponent, the continuity of the embedding to the summability of the function solving the fractional torsion problem in $\\Omega$ in a suitable weak sense, for every open set $\\Omega$. The proofs make use of a non-local Hardy-type inequality in $\\mathcal D^{s,p}_0(\\Omega)$, involving the fractional torsion function as a weight.", "revisions": [ { "version": "v1", "updated": "2018-01-23T10:26:25.000Z" } ], "analyses": { "subjects": [ "35P15", "46E35", "34K37" ], "keywords": [ "non-local torsion functions", "fractional sobolev conjugate exponent", "open set", "fractional torsion problem", "non-local hardy-type inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }