{ "id": "1801.07383", "version": "v1", "published": "2018-01-23T03:12:36.000Z", "updated": "2018-01-23T03:12:36.000Z", "title": "A class number formula for Picard modular surfaces", "authors": [ "Aaron Pollack", "Shrenik Shah" ], "categories": [ "math.NT", "math.AG", "math.RT" ], "abstract": "We investigate arithmetic aspects of the middle degree cohomology of compactified Picard modular surfaces $X$ attached to the unitary similitude group $\\mathrm{GU}(2,1)$ for an imaginary quadratic extension $E/\\mathbf{Q}$. We construct new Beilinson--Flach classes on $X$ and compute their Archimedean regulator. We obtain a special value formula involving a non-critical $L$-value of the degree six standard $L$-function, a Whittaker period, and the regulator. This provides evidence for Beilinson's conjecture in this setting.", "revisions": [ { "version": "v1", "updated": "2018-01-23T03:12:36.000Z" } ], "analyses": { "subjects": [ "11F67", "11G18", "11G40", "14G35", "19E15" ], "keywords": [ "class number formula", "middle degree cohomology", "special value formula", "compactified picard modular surfaces", "unitary similitude group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }