{ "id": "1801.07228", "version": "v1", "published": "2018-01-22T18:18:36.000Z", "updated": "2018-01-22T18:18:36.000Z", "title": "Scattering the geometry of weighted graphs", "authors": [ "Batu Güneysu", "Matthias Keller" ], "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "Given two weighted graphs $(X,b_k,m_k)$, $k=1,2$ with $b_1\\sim b_2$ and $m_1\\sim m_2$, we prove a weighted $L^1$-criterion for the existence and completeness of the wave operators $ W_{\\pm}(H_{2},H_1, I_{1,2})$, where $H_k$ denotes the natural Laplacian in $\\ell^2(X,m_k)$ w.r.t. $(X,b_k,m_k)$ and $I_{1,2}$ the trivial identification of $\\ell^2(X,m_1)$ with $\\ell^2(X,m_2)$. In particular, this entails a very general criterion for the absolutely continuous spectra of $H_1$ and $H_2$ to be equal.", "revisions": [ { "version": "v1", "updated": "2018-01-22T18:18:36.000Z" } ], "analyses": { "keywords": [ "weighted graphs", "natural laplacian", "general criterion", "trivial identification", "scattering" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }