{ "id": "1801.07197", "version": "v1", "published": "2018-01-22T17:08:03.000Z", "updated": "2018-01-22T17:08:03.000Z", "title": "Probabilistically nilpotent groups", "authors": [ "Aner Shalev" ], "comment": "To appear in Proc. Amer. Math. Soc", "categories": [ "math.GR" ], "abstract": "We show that, for a finitely generated residually finite group $\\Gamma$, the word $[x_1, \\ldots, x_k]$ is a probabilistic identity of $\\Gamma$ if and only if $\\Gamma$ is virtually nilpotent of class less than $k$. Related results, generalizations and problems are also discussed.", "revisions": [ { "version": "v1", "updated": "2018-01-22T17:08:03.000Z" } ], "analyses": { "subjects": [ "20E26", "20P05" ], "keywords": [ "probabilistically nilpotent groups", "finitely generated residually finite group", "probabilistic identity", "virtually nilpotent", "related results" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }