{ "id": "1801.06981", "version": "v1", "published": "2018-01-22T07:32:25.000Z", "updated": "2018-01-22T07:32:25.000Z", "title": "Spherical means on the Heisenberg group: Stability of a maximal function estimate", "authors": [ "Theresa C. Anderson", "Laura Cladek", "Malabika Pramanik", "Andreas Seeger" ], "categories": [ "math.CA" ], "abstract": "Consider the surface measure $\\mu$ on a sphere in a nonvertical hyperplane on the Heisenberg group $\\mathbb{H}^n$, $n\\ge 2$, and the convolution $f*\\mu$. Form the associated maximal function $Mf=\\sup_{t>0}|f*\\mu_t|$ generated by the automorphic dilations. We use decoupling inequalities due to Wolff and Bourgain-Demeter to prove $L^p$-boundedness of $M$ in an optimal range.", "revisions": [ { "version": "v1", "updated": "2018-01-22T07:32:25.000Z" } ], "analyses": { "subjects": [ "42B25", "22E25", "43A80", "35S30" ], "keywords": [ "maximal function estimate", "heisenberg group", "spherical means", "surface measure", "associated maximal function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }