{ "id": "1801.06865", "version": "v1", "published": "2018-01-21T18:16:37.000Z", "updated": "2018-01-21T18:16:37.000Z", "title": "Interpolation between H\\\" older and Lebesgue spaces with applications", "authors": [ "Anastasia Molchanova", "Tomáš Roskovec", "Filip Soudský" ], "comment": "8 pages", "categories": [ "math.FA" ], "abstract": "Classical interpolation inequality of the type $\\|u\\|_{X}\\leq C\\|u\\|_{Y}^{\\theta}\\|u\\|_{Z}^{1-\\theta}$ is well known in the case when $X$, $Y$, $Z$ are Lebesgue spaces. In this paper we show that this result may be extended by replacing norms $\\|\\cdot\\|_{Y}$ or $\\|\\cdot\\|_{X}$ by suitable H\\\" older semi-norm. We shall even prove sharper version involving weak Lorentz norm. We apply this result to prove the Gagliardo--Nirenberg inequality for a wider scale of parameters.", "revisions": [ { "version": "v1", "updated": "2018-01-21T18:16:37.000Z" } ], "analyses": { "subjects": [ "46E30", "46E35" ], "keywords": [ "lebesgue spaces", "applications", "weak lorentz norm", "wider scale", "classical interpolation inequality" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }