{ "id": "1801.06466", "version": "v1", "published": "2018-01-19T15:39:59.000Z", "updated": "2018-01-19T15:39:59.000Z", "title": "Spectral expansion of random sum complexes", "authors": [ "Orr Beit-Aharon", "Roy Meshulam" ], "comment": "12 pages, one figure", "categories": [ "math.CO" ], "abstract": "Let $G$ be a finite abelian group of order $n$ and let $\\Delta_{n-1}$ denote the $(n-1)$-simplex on the vertex set $G$. The sum complex $X_{A,k}$ associated to a subset $A \\subset G$ and $k < n$, is the $k$-dimensional simplicial complex obtained by taking the full $(k-1)$-skeleton of $\\Delta_{n-1}$ together with all $(k+1)$-subsets $\\sigma \\subset G$ that satisfy $\\sum_{x \\in \\sigma} x \\in A$. Let $C^{k-1}(X_{A,k})$ denote the space of complex valued $(k-1)$-cochains of $X_{A,k}$. Let $L_{k-1}:C^{k-1}(X_{A,k}) \\rightarrow C^{k-1}(X_{A,k})$ denote the reduced $(k-1)$-th Laplacian of $X_{A,k}$, and let $\\mu_{k-1}(X_{A,k})$ be the minimal eigenvalue of $L_{k-1}$. It is shown that for any $k \\geq 1$ and $\\epsilon>0$ there exists a constant $c(k,\\epsilon)$ such that if $A$ is a random subset of $G$ of size $m=\\lceil c(k,\\epsilon) \\log n \\rceil$, then $\\mu_{k-1}(X_{A,k}) > (1-\\epsilon)m$ asymptotically almost surely.", "revisions": [ { "version": "v1", "updated": "2018-01-19T15:39:59.000Z" } ], "analyses": { "subjects": [ "05E45", "60C05" ], "keywords": [ "random sum complexes", "spectral expansion", "dimensional simplicial complex", "finite abelian group", "random subset" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }