{ "id": "1801.06388", "version": "v1", "published": "2018-01-19T13:01:37.000Z", "updated": "2018-01-19T13:01:37.000Z", "title": "A note on multivariable $(\\varphi,Γ)$-modules", "authors": [ "Elmar Große-Klönne" ], "categories": [ "math.NT" ], "abstract": "Let $F/{\\mathbb Q}_p$ be a finite field extension, let $k$ be a field of characteristic $p$. Fix a Lubin Tate group $\\Phi$ for $F$ and let $\\Gamma\\times\\cdots\\times\\Gamma$ with $\\Gamma={\\mathcal O}_F^{\\times}$ act on $k[[t_1,\\ldots,t_n]][\\prod_it_i^{-1}]$ by letting $\\gamma_i$ (in the $i$-th factor $\\Gamma$) act on $t_i$ by insertion of $t_i$ into the power series attached to $\\gamma_i$ by $\\Phi$. We show that $k[[t_1,\\ldots,t_n]][\\prod_it_i^{-1}]$ admits no non-trivial ideal stable under $\\Gamma$, thereby generalizing a result of Z\\'{a}br\\'{a}di (who had treated the case where $\\Phi$ is the multiplicative group). We then discuss applications to $(\\varphi,\\Gamma)$-modules over $k[[t_1,\\ldots,t_n]][\\prod_it_i^{-1}]$.", "revisions": [ { "version": "v1", "updated": "2018-01-19T13:01:37.000Z" } ], "analyses": { "keywords": [ "finite field extension", "lubin tate group", "power series", "th factor", "multivariable" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }