{ "id": "1801.05380", "version": "v1", "published": "2018-01-16T17:32:44.000Z", "updated": "2018-01-16T17:32:44.000Z", "title": "On Hecke eigenvalues of Siegel modular forms in the Maass space", "authors": [ "Sanoli Gun", "Biplab Paul", "Jyoti Sengupta" ], "comment": "10 pages, To appear Forum Math", "categories": [ "math.NT" ], "abstract": "In this article, we prove an omega-result for the Hecke eigenvalues $\\lambda_F(n)$ of Maass forms $F$ which are Hecke eigenforms in the space of Siegel modular forms of weight $k$, genus two for the Siegel modular group $Sp_2(\\Z)$. In particular, we prove $$ \\lambda_F(n)= \\Omega(n^{k-1}\\text{exp} (c \\frac{\\sqrt{\\log n}}{\\log\\log n})), $$ when $c>0$ is an absolute constant. This improves the earlier result $$ \\lambda_F(n)= \\Omega(n^{k-1} (\\frac{\\sqrt{\\log n}}{\\log\\log n})) $$ of Das and the third author. We also show that for any $n \\ge 3$, one has $$ \\lambda_F(n) \\leq n^{k-1}\\text{exp} \\left(c_1\\sqrt{\\frac{\\log n}{\\log\\log n}}\\right), $$ where $c_1>0$ is an absolute constant. This improves an earlier result of Pitale and Schmidt. Further, we investigate the limit points of the sequence $\\{\\frac{\\lambda_F(n)}{n^{k-1}}\\}_{n \\in \\N}$ and show that it has infinitely many limit points. Finally, we show that $\\lambda_F(n) >0$ for all $n$, a result earlier proved by Breulmann by a different technique.", "revisions": [ { "version": "v1", "updated": "2018-01-16T17:32:44.000Z" } ], "analyses": { "subjects": [ "11F46", "11F30" ], "keywords": [ "siegel modular forms", "hecke eigenvalues", "maass space", "limit points", "absolute constant" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }