{ "id": "1801.03308", "version": "v1", "published": "2018-01-10T11:00:01.000Z", "updated": "2018-01-10T11:00:01.000Z", "title": "On minimal actions of countable groups", "authors": [ "Eli Glasner", "Benjamin Weiss" ], "comment": "An invited review", "categories": [ "math.DS", "math.PR" ], "abstract": "Our purpose here is to review some recent developments in the theory of dynamical systems whose common theme is a link between minimal dynamical systems, certain Ramsey type combinatorial properties, and the Lovasz local lemma (LLL). For a general countable group G the two classes of minimal systems we will deal with are (I) the minimal subsystems of the {\\em subgroup system} (Sub(G), G), called URS's (uniformly recurrent subgroups), and (II) minimal {\\em subshifts}; i.e. subsystems of the binary Bernoulli G-shift ({0, 1}^G, {\\sig_g}_{g \\in G}).", "revisions": [ { "version": "v1", "updated": "2018-01-10T11:00:01.000Z" } ], "analyses": { "subjects": [ "54H20", "05D10", "37A50", "20E99", "37B10" ], "keywords": [ "countable group", "minimal actions", "ramsey type combinatorial properties", "binary bernoulli g-shift", "lovasz local lemma" ], "tags": [ "review article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }