{ "id": "1801.03134", "version": "v1", "published": "2018-01-09T20:38:52.000Z", "updated": "2018-01-09T20:38:52.000Z", "title": "On a $q$-analogue of the number of representations of an integer as a sum of two squares", "authors": [ "José Manuel Rodríguez Caballero" ], "categories": [ "math.NT" ], "abstract": "Kassel and Reutenauer \\cite{kassel2016fourier} introduced a $q$-analogue of the number of representations of an integer as a sum of two squares. We establish some connections between the prime factorization of $n$ and the coefficients of this $q$-analogue.", "revisions": [ { "version": "v1", "updated": "2018-01-09T20:38:52.000Z" } ], "analyses": { "keywords": [ "representations", "prime factorization", "reutenauer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }