{ "id": "1801.03006", "version": "v1", "published": "2018-01-09T15:41:16.000Z", "updated": "2018-01-09T15:41:16.000Z", "title": "Evidence for the ultra-compact nature of IGR J17062-6143", "authors": [ "J. V. Hernandez Santisteban", "V. Cuneo", "N. Degenaar", "J. van den Eijnden", "D. Altamirano", "M. N. Gomez", "D. M. Russell", "R. Wijnands", "R. Golovakova", "M. T. Reynolds", "J. M. Miller" ], "comment": "12 pages, 9 figures, submitted to MNRAS", "categories": [ "astro-ph.HE" ], "abstract": "We present a multi-wavelength study of the persistent low-luminosity neutron star low-mass X-ray binary \\igr. The multi-epoch photometric UV to NIR spectral energy distribution (SED) is consistent with an accretion disc $F_{\\nu}\\propto\\nu^{1/3}$. The SED modelling of the accretion disc allowed us to estimate an outer disc radius of $R_{out}=3.9^{+1.9}_{-1.1} \\times 10^{9}$ cm and a mass-transfer rate $\\dot{m}=1.7^{+6.9}_{-1.2}\\times10^{-9}$ M$_{\\odot}$ yr$^{-1}$, consistent with both theoretical and observational estimates of ultra-compact X-ray binaries (UCXB). In combination with empirical X-ray/NIR relationships, we estimate the orbital period of the system to be $\\sim0.4-1$ hr. In addition, we obtained a low-resolution optical spectrum which revealed a blue continuum and no emission lines. The lack of hydrogen in the spectrum and the size of the accretion disc provide further evidence for an ultra-compact nature of this system.", "revisions": [ { "version": "v1", "updated": "2018-01-09T15:41:16.000Z" } ], "analyses": { "keywords": [ "ultra-compact nature", "accretion disc", "neutron star low-mass x-ray binary", "low-luminosity neutron star low-mass x-ray", "persistent low-luminosity neutron star low-mass" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }