{ "id": "1801.02934", "version": "v1", "published": "2018-01-09T13:47:49.000Z", "updated": "2018-01-09T13:47:49.000Z", "title": "Unitarily invariant norm inequalities involving $G_1$ operators", "authors": [ "Mojtaba Bakherad" ], "comment": "To appear in Commun. Korean Math. Society", "categories": [ "math.FA", "math.CV" ], "abstract": "In this paper, we present some upper bounds for unitarily invariant norms inequalities. Among other inequalities, we show some upper bounds for the Hilbert-Schmidt norm. In particular, we prove \\begin{align*} \\|f(A)Xg(B)\\pm g(B)Xf(A)\\|_2\\leq \\left\\|\\frac{(I+|A|)X(I+|B|)+(I+|B|)X(I+|A|)}{d_Ad_B}\\right\\|_2, \\end{align*} where $A, B, X\\in\\mathbb{M}_n$ such that $A$, $B$ are Hermitian with $\\sigma (A)\\cup\\sigma(B)\\subset\\mathbb{D}$ and $f, g$ are analytic on the complex unit disk $\\mathbb{{D}}$, $g(0)=f(0)=1$, $\\textrm{Re}(f)>0$ and $\\textrm{Re}(g)>0$.", "revisions": [ { "version": "v1", "updated": "2018-01-09T13:47:49.000Z" } ], "analyses": { "keywords": [ "unitarily invariant norm inequalities", "upper bounds", "unitarily invariant norms inequalities", "complex unit disk", "hilbert-schmidt norm" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }