{ "id": "1801.02784", "version": "v1", "published": "2018-01-09T03:45:22.000Z", "updated": "2018-01-09T03:45:22.000Z", "title": "Spectral Radius of $\\{0, 1\\}$-Tensor with Prescribed Number of Ones", "authors": [ "Shuliang Bai", "Linyuan Lu" ], "comment": "29 pages", "categories": [ "math.CO" ], "abstract": "For any $r$-order $\\{0, 1\\}$-tensor $A$ with $e$ ones, we prove that the spectral radius of $A$ is at most $e^{\\frac{r-1}{r}}$ with the equality holds if and only if $e={k^r}$ for some integer $k$ and all ones forms a principal sub-tensor ${\\bf 1}_{k\\times \\cdots \\times k}$. We also prove a stability result for general tensor $A$ with $e$ ones where $e=k^r+l$ with relatively small $l$. Using the stability result, we completely characterized the tensors achieving the maximum spectral radius among all $r$-order $\\{0, 1\\}$-tensor $A$ with $k^r+l$ ones, for $-r-1\\leq l \\leq r$, and $k$ sufficiently large.", "revisions": [ { "version": "v1", "updated": "2018-01-09T03:45:22.000Z" } ], "analyses": { "subjects": [ "05C50", "05C35" ], "keywords": [ "prescribed number", "stability result", "maximum spectral radius", "equality holds", "general tensor" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }