{ "id": "1801.02406", "version": "v1", "published": "2018-01-08T12:39:22.000Z", "updated": "2018-01-08T12:39:22.000Z", "title": "Tate's conjecture and the Tate-Shafarevich group over global function fields", "authors": [ "Thomas H. Geisser" ], "categories": [ "math.NT", "math.AG" ], "abstract": "Let $\\mathcal X$ be a regular variety, flat and proper over a complete regular curve over a finite field, such that the generic fiber $X$ is smooth. We prove that the Brauer group of $\\mathcal X$ is finite if and only Tate's conjecture for divisors on $X$ holds and the Tate-Shafarevich group of the Albanese variety of $X$ is finite, generalizing a theorem of Artin and Grothendieck for surfaces to arbitrary relative dimension.", "revisions": [ { "version": "v1", "updated": "2018-01-08T12:39:22.000Z" } ], "analyses": { "keywords": [ "global function fields", "tates conjecture", "tate-shafarevich group", "complete regular curve", "finite field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }