{ "id": "1801.02152", "version": "v1", "published": "2018-01-07T07:34:12.000Z", "updated": "2018-01-07T07:34:12.000Z", "title": "Characterization of matrices $B$ such that $(I,B,B^2)$ generates a digital net with $t$-value zero", "authors": [ "Hiroki Kajiura", "Makoto Matsumoto", "Kosuke Suzuki" ], "categories": [ "math.NT" ], "abstract": "We study $3$-dimensional digital nets over $\\mathbb{F}_2$ generated by matrices $(I,B,B^2)$ where $I$ is the identity matrix and $B$ is a square matrix. We give a characterization of $B$ for which the $t$-value of the digital net is $0$. As a corollary, we prove that such $B$ satisfies $B^3=I$.", "revisions": [ { "version": "v1", "updated": "2018-01-07T07:34:12.000Z" } ], "analyses": { "subjects": [ "11K31", "11K38" ], "keywords": [ "value zero", "characterization", "dimensional digital nets", "identity matrix" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }