{ "id": "1801.02002", "version": "v1", "published": "2018-01-06T10:58:11.000Z", "updated": "2018-01-06T10:58:11.000Z", "title": "Antipodal sets in infinite dimensional Banach spaces", "authors": [ "Eftychios Glakousakis", "Sophocles Mercourakis" ], "comment": "15 pages", "categories": [ "math.FA", "math.MG" ], "abstract": "The following strengthening of the Elton-Odell theorem on the existence of a $(1+\\epsilon)-$separated sequences in the unit sphere $S_X$ of an infinite dimensional Banach space $X$ is proved: There exists an infinite subset $S\\subseteq S_X$ and a constant $d>1$, satisfying the property that for every $x,y\\in S$ with $x\\neq y$ there exists $f\\in B_{X^*}$ such that $d\\leq f(x)-f(y)$ and $f(y)\\leq f(z)\\leq f(x)$, for all $z\\in S$.", "revisions": [ { "version": "v1", "updated": "2018-01-06T10:58:11.000Z" } ], "analyses": { "keywords": [ "infinite dimensional banach space", "antipodal sets", "infinite subset", "unit sphere", "elton-odell theorem" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }