{ "id": "1801.01770", "version": "v1", "published": "2018-01-05T14:41:12.000Z", "updated": "2018-01-05T14:41:12.000Z", "title": "C^{1,alpha} regularity for p(x)-harmonic thin obstacle problem", "authors": [ "Sun-sig Byun", "Ki-ahm Lee", "Jehan Oh", "Jinwan Park" ], "comment": "19 pages", "categories": [ "math.AP" ], "abstract": "We study thin obstacle problems involving the energy functional with $p(x)$-growth. We prove higher integrability and H\\\"{o}lder regularity for the gradient of minimizers of the thin obstacle problems under the assumption that the variable exponent $p(x)$ is H\\\"{o}lder continuous.", "revisions": [ { "version": "v1", "updated": "2018-01-05T14:41:12.000Z" } ], "analyses": { "keywords": [ "regularity", "study thin obstacle problems", "higher integrability", "energy functional", "minimizers" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }