{ "id": "1801.01542", "version": "v1", "published": "2017-12-20T18:45:43.000Z", "updated": "2017-12-20T18:45:43.000Z", "title": "Congruences of Power Sums", "authors": [ "Nicholas J. Newsome", "Maria S. Nogin", "Adnan H. Sabuwala" ], "comment": "12 pages", "categories": [ "math.NT" ], "abstract": "The following congruence for power sums, $S_n(p)$, is well known and has many applications: $1^n+2^n +\\dots +p^n \\equiv\\begin{cases} -1 \\text{ mod } p, & \\text{ if } \\ p-1 \\ | \\ n; 0 \\text{ mod } p, & \\text{ if } \\ p-1 \\ \\not| \\ n, \\end{cases}$ where $n\\in{\\mathbb N}$ and $p$ is prime. We extend this congruence, in particular, to the case when $p$ is any power of a prime. We also show that the sequence $(S_n(m) \\text{ mod } k )_{m \\geq 1}$ is periodic and determine its period.", "revisions": [ { "version": "v1", "updated": "2017-12-20T18:45:43.000Z" } ], "analyses": { "subjects": [ "11A07", "11B50", "11A25", "11B83" ], "keywords": [ "power sums", "congruence", "applications" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }