{ "id": "1801.00838", "version": "v1", "published": "2018-01-02T21:17:12.000Z", "updated": "2018-01-02T21:17:12.000Z", "title": "Differential equations in automorphic forms", "authors": [ "Kim Klinger-Logan" ], "comment": "32 pages", "categories": [ "math.NT", "math-ph", "math.MP", "math.SP" ], "abstract": "Physicists such as Green, Vanhove, et al show that differential equations involving automorphic forms govern the behavior of gravitons. One particular point of interest is solutions to $(\\Delta-\\lambda)u=E_{\\alpha} E_{\\beta}$ on an arithmetic quotient of the exceptional group $E_8$. We use spectral theory solve $(\\Delta-\\lambda)u=E_{\\alpha}E_{\\beta}$ on the simpler space $SL_2(\\mathbb{Z})\\backslash SL_2(\\mathbb{R})$. The construction of such a solution uses Arthur truncation, the Maass-Selberg formula, and automorphic Sobolev spaces.", "revisions": [ { "version": "v1", "updated": "2018-01-02T21:17:12.000Z" } ], "analyses": { "keywords": [ "automorphic forms", "differential equations", "automorphic sobolev spaces", "maass-selberg formula", "arthur truncation" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }