{ "id": "1801.00739", "version": "v1", "published": "2018-01-02T17:39:08.000Z", "updated": "2018-01-02T17:39:08.000Z", "title": "Log canonical pairs over varieties with maximal Albanese dimension", "authors": [ "Zhengyu Hu" ], "comment": "24 pages", "categories": [ "math.AG" ], "abstract": "Let $(X,B)$ be a log canonical pair over a normal variety $Z$ with maximal Albanese dimension. If $K_X+B$ is relatively abundant over $Z$ (for example, $K_X+B$ is relatively big over $Z$), then we prove that $K_X+B$ is abundant. In particular, the subadditvity of Kodaira dimensions $\\kappa(K_X+B) \\geq \\kappa(K_F+B_F)+ \\kappa(Z)$ holds, where $F$ is a general fiber, $K_F+B_F= (K_X+B)|_F$, and $\\kappa(Z)$ means the Kodaira dimension of a smooth model of $Z$. We discuss several variants of this result in Section 4. We also give a remark on the log Iitaka conjecture for log canonical pairs in Section 5.", "revisions": [ { "version": "v1", "updated": "2018-01-02T17:39:08.000Z" } ], "analyses": { "keywords": [ "log canonical pair", "maximal albanese dimension", "kodaira dimension", "log iitaka conjecture", "general fiber" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }