{ "id": "1801.00517", "version": "v1", "published": "2018-01-01T21:49:49.000Z", "updated": "2018-01-01T21:49:49.000Z", "title": "Dedekind Sums with Even Denominators", "authors": [ "Michael Kural" ], "categories": [ "math.NT" ], "abstract": "Let $S(a,b)$ denote the normalized Dedekind sum. We study the range of possible values for $S(a,b)=\\frac{k}{q}$ with $\\gcd(k,q)=1$. Girstmair proved local restrictions on $k$ depending on $q\\pmod{12}$ and whether $q$ is a square and conjectured that these are the only restrictions possible. We verify the conjecture in the cases $q$ even, $q$ a square divisible by $3$ or $5$, and $2\\le q\\le 200$ (the latter by computer), and provide progress towards a general approach.", "revisions": [ { "version": "v1", "updated": "2018-01-01T21:49:49.000Z" } ], "analyses": { "keywords": [ "denominators", "normalized dedekind sum", "local restrictions", "general approach", "conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }