{ "id": "1801.00438", "version": "v1", "published": "2018-01-01T12:34:24.000Z", "updated": "2018-01-01T12:34:24.000Z", "title": "On eigenfunctions and maximal cliques of Paley graphs of square order", "authors": [ "Sergey Goryainov", "Vladislav V. Kabanov", "Leonid Shalaginov", "Alexandr Valyuzhenich" ], "categories": [ "math.CO" ], "abstract": "In this paper we find new maximal cliques of size $\\frac{q+1}{2}$ or $\\frac{q+3}{2}$, accordingly as $q\\equiv 1(4)$ or $q\\equiv 3(4)$, in Paley graphs of order $q^2$, where $q$ is an odd prime power. After that we use new cliques to define a family of eigenfunctions corresponding to both non-principal eigenvalues and having the cardinality of support $q+1$, which is the minimum by the weight-distribution bound.", "revisions": [ { "version": "v1", "updated": "2018-01-01T12:34:24.000Z" } ], "analyses": { "keywords": [ "maximal cliques", "paley graphs", "square order", "eigenfunctions", "odd prime power" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }