{ "id": "1801.00392", "version": "v1", "published": "2018-01-01T04:29:11.000Z", "updated": "2018-01-01T04:29:11.000Z", "title": "Exponents of class groups of certain imaginary quadratic fields", "authors": [ "Azizul Hoque", "Kalyan Chakraborty" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "Let $n>1$ be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form $\\mathbb{Q}(\\sqrt{x^2-2y^n})$ whose ideal class group has an element of order $n$. This family gives a counter example to a conjecture by H. Wada \\cite{WA70} on the structure of ideal class groups.", "revisions": [ { "version": "v1", "updated": "2018-01-01T04:29:11.000Z" } ], "analyses": { "subjects": [ "11R29", "11R11" ], "keywords": [ "imaginary quadratic fields", "ideal class group", "odd integer", "counter example", "conjecture" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }