{ "id": "1712.10292", "version": "v1", "published": "2017-12-29T17:54:12.000Z", "updated": "2017-12-29T17:54:12.000Z", "title": "Multiple solutions for superlinear fractional problems via theorems of mixed type", "authors": [ "Vincenzo Ambrosio" ], "categories": [ "math.AP" ], "abstract": "In this paper we investigate the existence of multiple solutions for the following two fractional problems \\begin{equation*} \\left\\{ \\begin{array}{ll} (-\\Delta_{\\Omega})^{s} u-\\lambda u= f(x, u) &\\mbox{ in } \\Omega u=0 &\\mbox{ in } \\partial \\Omega \\end{array} \\right. \\end{equation*} and \\begin{equation*} \\left\\{ \\begin{array}{ll} (-\\Delta_{\\mathbb{R}^{N}})^{s} u-\\lambda u= f(x, u) &\\mbox{ in } \\Omega u=0 &\\mbox{ in } \\mathbb{R}^{N}\\setminus \\Omega, \\end{array} \\right. \\end{equation*} where $s\\in (0,1)$, $N>2s$, $\\Omega$ is a smooth bounded domain of $\\mathbb{R}^{N}$, and $f:\\bar{\\Omega}\\times \\mathbb{R}\\rightarrow \\mathbb{R}$ is a superlinear continuous function which does not satisfy the well-known Ambrosetti-Rabinowitz condition. Here $(-\\Delta_{\\Omega})^{s}$ is the spectral Laplacian and $(-\\Delta_{\\mathbb{R}^{N}})^{s}$ is the fractional Laplacian in $\\mathbb{R}^{N}$. By applying variational theorems of mixed type due to Marino and Saccon and Linking Theorem, we prove the existence of multiple solutions for the above problems.", "revisions": [ { "version": "v1", "updated": "2017-12-29T17:54:12.000Z" } ], "analyses": { "keywords": [ "multiple solutions", "superlinear fractional problems", "mixed type", "well-known ambrosetti-rabinowitz condition", "superlinear continuous function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }