{ "id": "1712.10289", "version": "v1", "published": "2017-12-29T17:44:32.000Z", "updated": "2017-12-29T17:44:32.000Z", "title": "$\\mathcal{S}^2$-differentiability and extension of the Koplienko trace formula", "authors": [ "Clément Coine", "Christian Le Merdy", "Anna Skripka", "Fedor Sukochev" ], "comment": "28 pages", "categories": [ "math.FA" ], "abstract": "Let $A$ be a selfadjoint operator in a separable Hilbert space, $K$ a selfadjoint Hilbert-Schmidt operator, and $f\\in C^n(\\mathbb{R})$. We establish that $\\varphi(t)=f(A+tK)-f(A)$ is $n$-times continuously differentiable on $\\mathbb{R}$ in the Hilbert-Schmidt norm, provided either $A$ is bounded or the derivatives $f^{(i)}$, $i=1,\\ldots,n$, are bounded. As an application, we extend the Koplienko trace formula \\begin{equation*} \\mathrm{Tr}\\Big(f(A+K) - f(A) - \\dfrac{d}{dt}f(A+tK)_{|t=0}\\Big) = \\int_{\\mathbb{R}} f\"(t) \\eta(t) \\, dt \\end{equation*} from the Besov class $B_{\\infty1}^2(\\mathbb{R})$ to functions $f$ for which the divided difference $f^{[2]}$ admits a certain Hilbert space factorization.", "revisions": [ { "version": "v1", "updated": "2017-12-29T17:44:32.000Z" } ], "analyses": { "subjects": [ "47B49", "47A55", "46L52" ], "keywords": [ "koplienko trace formula", "differentiability", "selfadjoint hilbert-schmidt operator", "hilbert space factorization", "separable hilbert space" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }