{ "id": "1712.09808", "version": "v1", "published": "2017-12-28T10:28:00.000Z", "updated": "2017-12-28T10:28:00.000Z", "title": "Kato square root problem with unbounded leading coefficients", "authors": [ "Luis Escauriaza", "Steve Hofmann" ], "categories": [ "math.AP" ], "abstract": "We prove the Kato conjecture for elliptic operators, $L=-\\nabla\\cdot\\left((\\mathbf A+\\mathbf D)\\nabla\\ \\right)$, with $\\mathbf A$ a complex measurable bounded coercive matrix and $\\mathbf D$ a measurable real-valued skew-symmetric matrix in $\\mathbb{R}^n$ with entries in $BMO(\\mathbb{R}^n)$;\\, i.e., the domain of $\\sqrt{L}\\,$ is the Sobolev space $\\dot H^1(\\mathbb{R}^n)$ in any dimension, with the estimate $\\|\\sqrt{L}\\, f\\|_2\\lesssim \\| \\nabla f\\|_2$.", "revisions": [ { "version": "v1", "updated": "2017-12-28T10:28:00.000Z" } ], "analyses": { "subjects": [ "35B45", "35J15", "35J25", "35J70", "42B20", "42B37", "47A07", "47B44", "47D06" ], "keywords": [ "kato square root problem", "unbounded leading coefficients", "measurable real-valued skew-symmetric matrix", "complex measurable bounded coercive matrix", "kato conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }