{ "id": "1712.09267", "version": "v1", "published": "2017-12-26T13:51:24.000Z", "updated": "2017-12-26T13:51:24.000Z", "title": "A saturation property for the spectral-Galerkin approximation of a Dirichlet problem in a square", "authors": [ "Claudio Canuto", "Ricardo H. Nochetto", "Rob Stevenson", "Marco Verani" ], "categories": [ "math.NA" ], "abstract": "Both practice and analysis of adaptive $p$-FEMs and $hp$-FEMs raise the question what increment in the current polynomial degree $p$ guarantees a $p$-independent reduction of the Galerkin error. We answer this question for the $p$-FEM in the simplified context of homogeneous Dirichlet problems for the Poisson equation in the two dimensional unit square with polynomial data of degree $p$. We show that an increment proportional to $p$ yields a $p$-robust error reduction and provide computational evidence that a constant increment does not.", "revisions": [ { "version": "v1", "updated": "2017-12-26T13:51:24.000Z" } ], "analyses": { "keywords": [ "dirichlet problem", "spectral-galerkin approximation", "saturation property", "current polynomial degree", "robust error reduction" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }