{ "id": "1712.08979", "version": "v1", "published": "2017-12-25T00:59:06.000Z", "updated": "2017-12-25T00:59:06.000Z", "title": "The Minimal Position of a Stable Branching Random Walk", "authors": [ "Jingning Liu", "Mei Zhang" ], "categories": [ "math.PR" ], "abstract": "In this paper, a branching random walk $(V(x))$ in the boundary case is studied, where the associated one dimensional random walk is in the domain of attraction of an $\\alpha-$stable law with $1<\\alpha<2$. Let $M_n$ be the minimal position of $(V(x))$ at generation $n$. We established an integral test to describe the lower limit of $M_n-\\frac{1}{\\alpha}\\log n$ and a law of iterated logarithm for the upper limit of $M_n-(1+\\frac{1}{\\alpha})\\log n$.", "revisions": [ { "version": "v1", "updated": "2017-12-25T00:59:06.000Z" } ], "analyses": { "keywords": [ "stable branching random walk", "minimal position", "dimensional random walk", "lower limit", "boundary case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }