{ "id": "1712.08882", "version": "v1", "published": "2017-12-24T06:45:34.000Z", "updated": "2017-12-24T06:45:34.000Z", "title": "Smooth symmetries of $\\times a$-invariant sets", "authors": [ "Michael Hochman" ], "comment": "14 pages", "categories": [ "math.DS" ], "abstract": "We study the smooth self-maps $f$ of $\\times a$-invariant sets $X\\subseteq[0,1]$. Under various assumptions we show that this forces $\\log f'(x)/\\log a\\in\\mathbb{Q}$ at many points in $X$. Our method combines scenery flow methods and equidistribution results in the positive entropy case, where we improve previous work of the author and Shmerkin, with a new topological variant of the scenery flow which applies in the zero-entropy case.", "revisions": [ { "version": "v1", "updated": "2017-12-24T06:45:34.000Z" } ], "analyses": { "subjects": [ "28A80", "11K55", "11B30", "11P70" ], "keywords": [ "invariant sets", "smooth symmetries", "scenery flow methods", "positive entropy case", "equidistribution results" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }