{ "id": "1712.08039", "version": "v1", "published": "2017-12-21T16:06:00.000Z", "updated": "2017-12-21T16:06:00.000Z", "title": "Two asymptotic expansions for gamma function developed by Windschitl's formula", "authors": [ "Zhen-Hang Yang", "Jing-Feng Tian" ], "comment": "14 pages", "categories": [ "math.CA" ], "abstract": "In this paper, we develop Windschitl's approximation formula for the gamma function to two asymptotic expansions by using a little known power series. In particular, for $n\\in \\mathbb{N}$ with $n\\geq 4$, we have \\begin{equation*} \\Gamma \\left( x+1\\right) =\\sqrt{2\\pi x}\\left( \\tfrac{x}{e}\\right) ^{x}\\left( x\\sinh \\tfrac{1}{x}\\right) ^{x/2}\\exp \\left( \\sum_{k=3}^{n-1}\\tfrac{\\left( 2k\\left( 2k-2\\right) !-2^{2k-1}\\right) B_{2k}}{2k\\left( 2k\\right) !x^{2k-1}} +R_{n}\\left( x\\right) \\right) \\end{equation*} with \\begin{equation*} \\left| R_{n}\\left( x\\right) \\right| \\leq \\frac{\\left| B_{2n}\\right| }{2n\\left( 2n-1\\right) }\\frac{1}{x^{2n-1}} \\end{equation*} for all $x>0$, where $B_{2n}$ is the Bernoulli number. Moreover, we present some approximation formulas for gamma function related to Windschitl's approximation one, which have higher accuracy.", "revisions": [ { "version": "v1", "updated": "2017-12-21T16:06:00.000Z" } ], "analyses": { "subjects": [ "33B15", "41A60", "41A10", "41A20" ], "keywords": [ "gamma function", "asymptotic expansions", "windschitls formula", "windschitls approximation formula", "power series" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }