{ "id": "1712.07731", "version": "v1", "published": "2017-12-20T22:18:14.000Z", "updated": "2017-12-20T22:18:14.000Z", "title": "Some inequalities for operator (p,h)-convex functions", "authors": [ "Trung Hoa Dinh", "Khue TB Vo" ], "journal": "Linear and Multilinear Algebra, 2017", "doi": "10.1080/03081087.2017.1307914", "categories": [ "math.FA" ], "abstract": "Let $p$ be a positive number and $h$ a function on $\\mathbb{R}^+$ satisfying $h(xy) \\ge h(x) h(y)$ for any $x, y \\in \\mathbb{R}^+$. A non-negative continuous function $f$ on $K (\\subset \\mathbb{R}^+)$ is said to be {\\it operator $(p,h)$-convex} if \\begin{equation*}\\label{def} f ([\\alpha A^p + (1-\\alpha)B^p]^{1/p}) \\leq h(\\alpha)f(A) +h(1-\\alpha)f(B) \\end{equation*} holds for all positive semidefinite matrices $A, B$ of order $n$ with spectra in $K$, and for any $\\alpha \\in (0,1)$. In this paper, we study properties of operator $(p,h)$-convex functions and prove the Jensen, Hansen-Pedersen type inequalities for them. We also give some equivalent conditions for a function to become an operator $(p,h)$-convex. In applications, we obtain Choi-Davis-Jensen type inequality for operator $(p,h)$-convex functions and a relation between operator $(p,h)$-convex functions with operator monotone functions.", "revisions": [ { "version": "v1", "updated": "2017-12-20T22:18:14.000Z" } ], "analyses": { "keywords": [ "convex functions", "operator monotone functions", "hansen-pedersen type inequalities", "choi-davis-jensen type inequality", "positive semidefinite matrices" ], "tags": [ "journal article" ], "publication": { "publisher": "Taylor-Francis" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }