{ "id": "1712.07638", "version": "v1", "published": "2017-12-20T18:48:14.000Z", "updated": "2017-12-20T18:48:14.000Z", "title": "joint spreading models and uniform approximation of bounded operators", "authors": [ "S. A. Argyros", "A. Georgiou", "A. -R. Lagos", "P. Motakis" ], "comment": "34 pages", "categories": [ "math.FA" ], "abstract": "We investigate the following property for Banach spaces. A Banach space $X$ satisfies the Uniform Approximation on Large Subspaces (UALS) if there exists $C>0$ such that for $A\\in\\mathcal{L}(X)$, $W\\subset\\mathcal{L}(X)$ with $W$ convex and compact such that for some $\\varepsilon>0$ and for every $x\\in X$, $x\\neq0$, there exists $B\\in W$ with $\\|A(x)-B(x)\\|<\\varepsilon\\|x\\|$ then there exists a subspace $Y$ of $X$ of finite codimension and a $B\\in W$ with $\\|(A-B)|_Y\\|_{\\mathcal{L}(Y,X)}