{ "id": "1712.07463", "version": "v1", "published": "2017-12-20T13:14:01.000Z", "updated": "2017-12-20T13:14:01.000Z", "title": "On the finiteness of the Gorenstein dimension for Artin algebras", "authors": [ "Rene Marczinzik" ], "categories": [ "math.RT" ], "abstract": "In \\cite{SSZ}, the authors proved that an Artin algebra $A$ with infinite global dimension has an indecomposable module with infinite projective and infinite injective dimension, giving a new characterisation of algebras with finite global dimension. We prove in this article that an Artin algebra $A$ that is not Gorenstein has an indecomposable $A$-module with infinite Gorenstein projective dimension and infinite Gorenstein injective dimension, which gives a new characterisation of algebras with finite Gorenstein dimension. We show that this gives a proper generalisation of the result in \\cite{SSZ} for Artin algebras.", "revisions": [ { "version": "v1", "updated": "2017-12-20T13:14:01.000Z" } ], "analyses": { "keywords": [ "artin algebra", "finiteness", "finite gorenstein dimension", "infinite global dimension", "infinite gorenstein projective dimension" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }