{ "id": "1712.06516", "version": "v1", "published": "2017-12-18T16:51:28.000Z", "updated": "2017-12-18T16:51:28.000Z", "title": "Automorphisms of dihedral-like automorphic loops", "authors": [ "Mouna Aboras", "Petr Vojtěchovský" ], "journal": "Communications in Algebra 44 (2016), no. 2, 613-627", "categories": [ "math.GR" ], "abstract": "Automorphic loops are loops in which all inner mappings are automorphisms. A large class of automorphic loops is obtained as follows: Let $m$ be a positive even integer, $G$ an abelian group, and $\\alpha$ an automorphism of $G$ that satisfies $\\alpha^2=1$ if $m>2$. Then the dihedral-like automorphic loop $\\mathrm{Dih}(m,G,\\alpha)$ is defined on $\\mathbb Z_m\\times G$ by $(i,u)(j,v)=(i+j, ((-1)^{j}u+v)\\alpha^{ij})$. We prove that two finite dihedral-like automorphic loops $\\mathrm{Dih}(m,G,\\alpha)$, $\\mathrm{Dih}(\\overline{m},\\overline{G},\\overline{\\alpha})$ are isomorphic if and only if $m=\\overline{m}$, $G=\\overline{G}$, and $\\alpha$ is conjugate to $\\overline{\\alpha}$ in the automorphism group of $G$. Moreover, for a finite dihedral-like automorphic loop $Q$ we describe the structure of the automorphism group of $Q$ and its subgroup consisting of inner mappings of $Q$.", "revisions": [ { "version": "v1", "updated": "2017-12-18T16:51:28.000Z" } ], "analyses": { "subjects": [ "20N05", "20D45" ], "keywords": [ "finite dihedral-like automorphic loop", "inner mappings", "automorphism group", "abelian group", "large class" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }