{ "id": "1712.06315", "version": "v1", "published": "2017-12-18T09:50:45.000Z", "updated": "2017-12-18T09:50:45.000Z", "title": "Lusin-type approximation of Sobolev by Lipschitz functions, in Gaussian and $RCD(K,\\infty)$ spaces", "authors": [ "Luigi Ambrosio", "Elia Bruè", "Dario Trevisan" ], "categories": [ "math.FA", "math.MG" ], "abstract": "We establish new approximation results, in the sense of Lusin, of Sobolev functions by Lipschitz ones, in some classes of non-doubling metric measure structures. Our proof technique relies upon estimates for heat semigroups and applies to Gaussian and $RCD(K, \\infty)$ spaces. As a consequence, we obtain quantitative stability for regular Lagrangian flows in Gaussian settings.", "revisions": [ { "version": "v1", "updated": "2017-12-18T09:50:45.000Z" } ], "analyses": { "subjects": [ "37C10", "60H07" ], "keywords": [ "lipschitz functions", "lusin-type approximation", "non-doubling metric measure structures", "proof technique relies", "regular lagrangian flows" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }