{ "id": "1712.05719", "version": "v1", "published": "2017-12-15T15:50:07.000Z", "updated": "2017-12-15T15:50:07.000Z", "title": "Winding number $m$ and $-m$ patterns acting on concordance", "authors": [ "Allison N. Miller" ], "comment": "9 pages, 1 figure", "categories": [ "math.GT" ], "abstract": "We prove that for any winding number $m>0$ pattern $P$ and winding number $-m$ pattern $Q$, there exist knots $K$ such that the minimal genus of a cobordism between $P(K)$ and $Q(K)$ is arbitrarily large. This answers a question posed by Cochran-Harvey [CH17] and generalizes a result of Kim-Livingston [KL05].", "revisions": [ { "version": "v1", "updated": "2017-12-15T15:50:07.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27" ], "keywords": [ "winding number", "patterns acting", "concordance", "minimal genus", "arbitrarily large" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }