{ "id": "1712.05635", "version": "v1", "published": "2017-12-15T12:08:20.000Z", "updated": "2017-12-15T12:08:20.000Z", "title": "On wrapping number, adequacy and the crossing number of satellite knots", "authors": [ "Adrián Jiménez Pascual" ], "comment": "28 pages, 31 figures", "categories": [ "math.GT" ], "abstract": "In this work we establish the tightest lower bound up-to-date for the minimal crossing number of a satellite knot based on the minimal crossing number of the companion used to build the satellite. If $M$ is the wrapping number of the pattern knot, we essentially show that $c(Sat(P,C))>\\frac{M^2}{2}c(C)$. The existence of this bound will be proven when the companion knot is adequate, and it will be further tuned in the case of the companion being alternating.", "revisions": [ { "version": "v1", "updated": "2017-12-15T12:08:20.000Z" } ], "analyses": { "subjects": [ "57M25", "57M27" ], "keywords": [ "satellite knot", "wrapping number", "minimal crossing number", "tightest lower bound up-to-date", "companion knot" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }