{ "id": "1712.05434", "version": "v1", "published": "2017-12-14T20:01:53.000Z", "updated": "2017-12-14T20:01:53.000Z", "title": "On the cohomological spectrum and support varieties for infinitesimal unipotent supergroup schemes", "authors": [ "Christopher M. Drupieski", "Jonathan R. Kujawa" ], "comment": "35 pages", "categories": [ "math.RT", "math.GR" ], "abstract": "We show that if $G$ is an infinitesimal elementary supergroup scheme of height $\\leq r$, then the cohomological spectrum $|G|$ of $G$ is naturally homeomorphic to the variety $\\mathcal{N}_r(G)$ of supergroup homomorphisms $\\rho: \\mathbb{M}_r \\rightarrow G$ from a certain (non-algebraic) affine supergroup scheme $\\mathbb{M}_r$ into $G$. In the case $r=1$, we further identify the cohomological support variety of a finite-dimensional $G$-supermodule $M$ as a subset of $\\mathcal{N}_1(G)$. We then discuss how our methods, when combined with recently-announced results by Benson, Iyengar, Krause, and Pevtsova, can be applied to extend the homeomorphism $\\mathcal{N}_r(G) \\cong |G|$ to arbitrary infinitesimal unipotent supergroup schemes.", "revisions": [ { "version": "v1", "updated": "2017-12-14T20:01:53.000Z" } ], "analyses": { "subjects": [ "20G10", "17B56" ], "keywords": [ "support variety", "cohomological spectrum", "arbitrary infinitesimal unipotent supergroup schemes", "infinitesimal elementary supergroup scheme", "affine supergroup scheme" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }