{ "id": "1712.05405", "version": "v1", "published": "2017-12-15T00:11:05.000Z", "updated": "2017-12-15T00:11:05.000Z", "title": "On Determinants of Laplacians on Compact Riemann Surfaces Equipped with Pullbacks of Conical Metrics by Meromorphic Functions", "authors": [ "Victor Kalvin" ], "comment": "arXiv admin note: text overlap with arXiv:1612.08660", "categories": [ "math.AP", "math.DG", "math.SP" ], "abstract": "Let $\\mathsf m$ be any conical (or smooth) metric of finite volume on the Riemann sphere $\\Bbb CP^1$. On a compact Riemann surface $X$ of genus $g$ consider a meromorphic funciton $f: X\\to {\\Bbb C}P^1$ such that all poles and critical points of $f$ are simple and no critical value of $f$ coincides with a conical singularity of $\\mathsf m$ or $\\{\\infty\\}$. The pullback $f^*\\mathsf m$ of $\\mathsf m$ under $f$ has conical singularities of angles $4\\pi$ at the critical points of $f$ and other conical singularities that are the preimages of those of $\\mathsf m$. We study the $\\zeta$-regularized determinant $\\operatorname{Det}' \\Delta_F$ of the (Friedrichs extension of) Laplace-Beltrami operator on $(X,f^*\\mathsf m)$ as a functional on the moduli space of pairs $(X, f)$ and obtain an explicit formula for $\\operatorname{Det}' \\Delta_F$.", "revisions": [ { "version": "v1", "updated": "2017-12-15T00:11:05.000Z" } ], "analyses": { "keywords": [ "compact riemann surface", "meromorphic functions", "conical metrics", "determinant", "conical singularity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }